You should save/print a copy of this page in case of server issue.
Live update:
Join discord server https://discord.gg/e27FvV8p for up to date and live information on the competition.Submitting answer for FRQ problems:
You may use plus, minus sign, decimal point, exponential form e or E, and numbers in your submitted answer. For example, the following numerical answers are accepted: 3.14159, 0.314159e1, 31.4159e-2, -1.6e-19, -1.6E-19, -0.16E-18
No other alphabetical letter or symbol is accepted in the numerical answer. Fractions are not accepted. You will NOT need to specify any unit for FRQ problem.
How to upload your work
Email mindquest2018@gmail.com a single zip file within 1 hour after the exam with your name and some random letter in the format firstname_lastname_NNNN to avoid name clash, e.g. john_doe_2315.zip
You should practice scanning your work, zip your files and email them before exam. It should not take long once you know how to do it.
Notations used in the problems
sin2x=sinx⋅sinx and similarly for other trig functions. lnx stands for e based natural log, logx stands for 10 based log.The following constants are given
Symbol | Name | Value |
c | Speed of light in vacuum | 299,792,458m/s≈3.00×108m/s |
G | Gravitational constant | 6.67×10−11N⋅m2/kg2 |
g | g near Earth surface | 10m⋅s−2 |
NA | Avogadro’s number | 6.02×1023 |
k | Boltzmann’s constant | 1.38×10−23J/K |
R | Gas constant | 8.31J/mol⋅K=1.99cal/mol⋅K=0.0821atm⋅L/mol⋅K |
σ | Stefan-Boltzmann constant | 5.67×10−8W/m2⋅K |
b | Wien's constant | 2.898×10−3K ⋅m |
k | Coulomb force constant | 8.99×109N⋅m2/C2 |
qe | Charge on electron | −1.60×10−19C |
ε0 | Permittivity of free space | 8.85×10−12C2/Nm2 |
μ0 | Permeability of free space | 4π×10−7T⋅m/A |
h | Planck’s constant | 6.63×10−34J⋅s |
me | Electron mass | 9.11×10−31kg |
mp | Proton mass | 1.6726×10−27kg |
mn | Neutron mass | 1.6749×10−27kg |
u | Atomic mass unit | 1.6605×10−27kg |
M⊙ | Mass of the Sun | 1.989×1030kg |
R⊙ | Radius of the Sun | 6.96×108m |
T⊙ | Solar temperature | 5770K |
M⊙ | Absolute magnitude | 4.83 |
M⊕ | Mass of the Earth | 5.976×1024kg |
R⊕ | Radius of the Earth | 6.371×106m |
AU | Astronomical Unit | 1.496×1011m |
ly | light year | 9.461×1015m |
pc | parsec | 3.086×1016m |
H0 | Hubble's constant | 70(km/s)/Mpc |
Ry | Rydberg constant | 13.6eV |
F | Faraday's constant | 96500C/mol |
cp | Specific Heat water | 4.184J/g/K |
The following integrals are given
- ∫dxx2+r2=1rtan−1(xr)
- ∫dx√1−x2=sin−1x
- ∫dx√1+x2=sinh−1x
- ∫dx1−x2=tanh−1x
- ∫dx1+x2=tan−1x
- ∫dx(1−x2)3/2=x√1−x2
- ∫dx(1+x2)3/2=x√1+x2
- ∫√1+x1−xdx=−√1−x2−2sin−1(√1−x2)
- ∫√1+x(1−x)3dx=2√1+x1−x+2sin−1(√1−x2)
- ∫dx(1−x)3/2(1+x)1/2=√1+x1−x
- ∫dx(1−x)3/2(1+x)3/2=x√1−x2
- ∫dx(1−x)5/2(1+x)1/2=(2−x)√1+x3√1−x3/2
- ∫dx(1−x)5/2(1+x)3/2=1−2x−2x23√1−x3/2(1+x)1/2
- ∫dx√x2−1=ln(x+√x2−1)
- ∫dx√x2+a2=ln(√x2+a2+x)
- ∫dx(a2+x2)3/2=xa2(a2+x2)1/2
- ∫lnxdx=xlnx−x
- ∫xnln(ax)dx=xn+1(n+1)2+xn+1n+1ln(ax)
- ∫xe−xdx=−(x+1)e−x
- ∫x2e−xdx=−(x2+2x+2)e−x
- ∫sin3xdx=−cosx+cos3x3
- ∫cos3xdx=sinx−sin3x3
- ∫dxcosx=ln(1+sinxcosx)
- ∫dxsinx=ln(1−cosxsinx)
- ∫cosxdx(1−a2cos2x)3/2=sinx(1−a2)√1−a2cos2x
- ∫sinxdx(1−a2cos2x)3/2=−cosx√1−a2cos2x
- ∫sinxdx(1−a2sin2x)3/2=−cosx(1−a2)√1−a2sin2x
- ∫cosxdx(1−b2sin2(x−a))3/2=(2−b2)sinx+b2sin(2a−x)2(1−b2)√1−b2sin2(a−x)
- ∫sinx(acosx−b)dx(a2+b2−2abcosx)3/2=−a+bcosxb2√a2+b2−2abcosx
- ∫π0x−cosθ1+x2−2xcosθdθ=0
The following vector identities are given
- ∇⋅(∇×→A)=0
- ∇⋅(f→A)=f∇⋅→A+→A⋅∇f
- ∇⋅(→A×→B)=→B⋅(∇×→A)−→A⋅(∇×→B)
- ∇×(∇f)=0
- ∇×(f→A)=f∇×→A+(∇f)×→A
- ∇×(∇×→A)=∇(∇⋅→A)−∇2→A
- ∇×(→A×→B)=→A(∇⋅→B)−→B(∇⋅→A)+(→B⋅∇)→A−(→A⋅∇)→B
- →A×(→B×→C)=→B(→A⋅→C)−→C(→A⋅→B)
- ∇(→A⋅→B)=(→A⋅∇)→B+(→B⋅∇)→A+→A×(∇×→B)+→B×(∇×→A)
The following Taylor Series are given
- (1+x)n=1+nx+n(n−1)2x2+n(n−1)(n−2)3!x3+...
- √1+x=1+x2−x28+...
- 1√1+x=1−x2+3x28+...
- 11−x=1+x+x2+x3+...
- ex=1+x+12!x2+13!x3+...
- ln(1+x)=x−x22+x33−x44+...
- cosx=1−12!x2+14!x4+...
- sinx=x−13!x3+15!x5+...
- tan−1x=x−x33+x55−x77+...
The following formula are given
- E=q4πϵ0r21−β2(1−β2sin2θ)3/2